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Abstract

In order to capture the concept of common knowledge, various extensions of

multi-modal epistemic logics, such as �xed-point type extensions and in�nitary

ones, have been proposed. Although we have now a good list of such proposed

extensions, the relationships among these extensions are still unclear. The pur-

pose of this paper is to draw a map showing the relationships among them. In

the propositional case, these logics turn to be all Kripke complete and could

be comparable in a meaningful manner. In the predicate case, there is the gap

shown by F. Wolter that the predicate extension of the Halpern-Moses �xed-

point type common knowledge logic is Kripke incomplete. However, if we go

further to an in�nitary extension, Kripke completeness would be recovered. In

drawing the map, we focus on what are happening around the gap in the pred-

icate case. The map enables us to better understand the common knowledge

logics as a whole.

1. Introduction

Multi-agent epistemic logics have been developed for investigations of multi-agents

interactions such as game theoretical problems. In such multi-agent situations,

common knowledge is important in discussing knowledge (or beliefs) shared among

agents. Various extensions have been proposed in order to capture the concept of

common knowledge. These extensions are divided into two types: the �xed-point

and in�nitary approaches, e.g., Halpern-Moses [4] is in the former and Kaneko-

Nagashima [8], [9] in the latter. Some of them are given as propositional logics and

some others as predicate logics. Also, some are considered from the model-theoretic

viewpoint and some others from the proof-theoretic viewpoint. Thus, we have a good

list of extensions of epistemic logics, but their mutual relationships are yet unclear.
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The purpose of this paper is to draw a map showing the relationships among those

extensions.

In the propositional case, these extensions turn to be all Kripke complete, and are

comparable meaningfully in the sense that if one is an extension of another, it is also

a conservative extension. In contrast to the propositional case, Wolter [21] proved in

the predicate case that the set of valid formulae in the Kripke semantics is not recur-

sively enumerable in the presence of common knowledge. This has the implication

that any �nitary predicate extension of an epistemic logic cannot capture the Kripke

semantics with common knowledge. In other words, the latter has no �nitary proof

theory. Nevertheless, it is also known from Tanaka-Ono [19] and Tanaka [16] that

this di�culty does not occur in the in�nitary approach. Thus, in the predicate case,

there is some gap from the �xed-point logic approach to the in�nitary approach. In

drawing a map of common knowledge logics, we will focus especially on what are

happening around this gap.

Diagram 1.1 gives some extant extensions of multi-agent epistemic logics. Since

we discuss various common knowledge extensions, we adopt KD4-type axioms as

basic epistemic axioms on belief operators. Thus, we will start with propositional

multi-agent epistemic logic KD4n; where n is the number of agents. The pre�x

Q means the predicate extension of a propositional logic together with the Barcan

axiom. For example, QKD4n is the predicate extension of KD4n: Logic HM is the

�xed-point type extension of KD4n due to Halpern-Moses [4], where the common

knowledge of a formula is determined by adding one axiom and one inference rule

to KD4n. Logic GL! is an in�nitary extension of KD4n due to Kaneko-Nagashima

[8] and [9], where the common knowledge of a formula is explicitly expressed as an

in�nitary conjunctive formula, and QGL! is its predicate extension.1

Finitary

Base Logic
Finitary In�nitary

Propositional KD4n HM GL!

Predicate QKD4n QHM QGL!

Diagram 1.1

The Kripke completenesses of KD4n and QKD4n have been known as variants

of completeness results given in modal logic literature (cf., Hughes-Cresswell [6]). It

is also known from Halpern-Moses [4] (see also Lismont-Mongin [11], Fagin, et.al [1]

and Meyer-van der Hoek [12]) that HM is complete. It follows from Tanaka-Ono

[19] that GL! is Kripke complete. These completeness results in the propositional

case imply that if one logic is an extension of another, then it is a conservative

extension. On the other hand, it is known in the predicate case that there is a gap

from QHM to QGL! : As already mentioned, QKD4n is Kripke complete, and so is

QGL! ; which could be expected by Tanaka-Ono [19] and Tanaka [18]. However, it

1We may �nd some other approach such as Segerberg [13]. Tanaka [17] discussed completeness
of such a logic in the predicate case from the viewpoints of noncompact logics.
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follows from Wolter's [21] theorem that QHM is Kripke incomplete. Thus, the gap

above mentioned exists between QHM and QGL!:

In the propositional case, the extensions are successfully made from HM to GL!.

We have Kripke incompleteness only for QHM. This non-parallelism may be inter-

preted in two ways: One interpretation is that the predicate case is regarded as a

conundrum. The other is that it is a conundrum to have such successful results

in the propositional case, since a common knowledge extension includes implicitly

in�nite conjunctions. After all, we will not able to conclude which case would be a

conundrum. Nevertheless, we will see approximately where it occurs.

From the syntactical point of view, the distance from QHM to QGL! is large in

that QGL! allows in�nitary conjunctions and disjunctions. To consider the ques-

tion of where from QHM to QGL! the gap occurs, we provide other two logics,

propositional CX and CY, and their predicate extensions QCX and QCY. In the

propositional case, both CX and CY are shown to be equivalent to HM. In the pred-

icate case, QCY is shown to be Kripke complete, which together other problems will

be discussed in Tanaka [16]. This result together with Wolter's [21] theorem that

implies that QCY is not equivalent to QHM. Diagram 1.2 gives a full list of logics

to be considered in this paper. The gap occurs only from QHM to QCY. Logics HM

and CY are faithfully embedded into in�nitary GL!; which relation is denoted by

 :

Propositional KD4n ! HM ! CX  ! CY  GL!
# # # # #

Predicate QKD4n ! QHM! QCX! QCY  QGL!

formulae �nitary �nitary �nitary in�nitary

proofs �nitary �nitary in�nitary in�nitary

Diagram 1.2

Logics CX, CY and QCX, QCY keep the set of �nitary formulae in the same

way as HM and QHM. However, the formers include in�nitary inference rules, which

implies that in�nitary proofs are required. In this sense, QCX and QCY are located

also between QHM and QGL! :

Logics CX and QCX look more natural than CY and QCY. The formers are

de�ned by adding, to KD4n and QKD4n; two axiom schemata and one inference

rule directly on common knowledge. In contrast, logics CY and QCY are de�ned

by strengthening the inference rule to a somewhat arti�cial rule. As already stated,

Kripke completeness is available for CX, CY, QCY, and the Kripke completeness of

QCX remains open.

We should mention another trial to avoid the gap. In contrast to our approach

of considering extensions of QHM, Sturm-Wolter-Zakharyaschev [15] considered a

fragment of QHM, which is the monodic fragment and de�ned in Section 5. They

proved the Kripke completeness of the monodic fragment of QHM with no function

symbols and no equality. This fragment is located between HM and QHM. The jump

occurs after the monodic fragment of QHM.
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Tanaka [16] considers the behavior of logic QCY in details as well as its Kripke

completeness in the case of no function symbols. The original motivation for pred-

icate common knowledge logics is to consider theories with interactions between

agents such as game theoretical problems (cf., Kaneko-Nagashima [8]). Hence, it is

preferable to include function symbols as well as equality in such a �rst-order the-

ory. A proof of the completeness theorem for QCY can be obtained by modifying

Tanaka's [16] proof of the completeness of QCY.

We will give a uni�ed treatment of these logics. We need to mention paralleled

results for propositional and predicate cases. However, we would often mention

results only in the predicate case since they can be stated in the propositional case

without much di�culty.

2. Logics KD4n and QKD4n

In this section, we formulate propositional KD4n and predicate QKD4n so that they

are directly comparable. Common knowledge logics will be de�ned as extensions

of these logics. In contrast with the multiplicity of syntactical systems, the Kripke

semantics is uniquely de�ned and enables us to make comparisons of various syn-

tactical systems. As stated in Section 1, we will make a choice of KD4-type logical

axioms throughout the paper.

2.1. Language

Throughout the paper, we use the following list of symbols:

Free variables: a0; a1; :::; Bound variables: x0;x1; :::;

Logical connectives: : (not);� (implies); ^ (and); _ (or);

Quanti�ers: 8 (for all); 9 (exists);

Function symbols: f0; f1; :::; Predicate symbols: P0;P1; :::;

Unary belief operator symbols: B1; :::;Bn;

Unary common knowledge operator symbol: C;

Parentheses: ( ; ):

The subscripts 1; :::; n of B1; :::;Bn are the names of agents. We denote the set of

agents f1; 2; :::; ng by N: In the following, we consider the case of n � 2: We denote

the set of all free variables by FV . We assume that there are countably in�nite

numbers of free variables and bound variables. Each fk is assumed to be an l-ary

function symbol for some l � 0; and each Pk is an l-ary predicate symbol for some

l � 0: When l = 0; fk is a constant symbol and Pk is a propositional variable. We

denote the list of these function and predicate symbols by L = [f0; f1; :::;P0;P1; :::]:

We assume that there is at least one 0-ary predicate symbol but there may be no

function symbols.

Terms and formulae are de�ned in the standard �nitary manners. We denote

the set of all formulae by P : We denote, by P�C; the set of formulae in P which

have no occurrences of C; and by P�B; the set of formulae in P which have no

occurrences of B1; :::;Bn. The set of formulae including neither C nor B1; :::;Bn is
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P�BC = P�B \ P�C: We say that a formula A (or a term t ) is closed i� no free

variable occurs in A (respectively, in t):

We de�ne the propositional fragment P�Q of P to be the set of formulae generated

from the 0-ary predicate symbols without quanti�ers. We also denote P�C \ P�Q
and P�BC \ P�Q by P�CQ and P�BCQ: The set P�CQ is the propositional fragment

without including common knowledge operator C, and is used to de�ne KD4n:

For any A 2 P , we de�ne the set Sub(A) of subformulae of A inductively as

follows:

(0) Sub(A) = fAg for any atomic formula A;

(1) Sub(:A) = Sub(A) [ f:Ag;

(2) Sub(A �B) = Sub(A)[Sub(B) [ fA �Bg; where � is �;^ or _;

(3) Sub(QxA(x)) =
S
t is a termSub(A(t)) [ fQxA(x)g; where Q is 8 or 9;

(4) Sub(Bi(A)) = Sub(A) [ fBi(A)g for i 2 N ;

(5) Sub(C(A)) = Sub(A) [ fC(A)g:

We call B a subformula of A i� B 2 Sub(A).

The set P�B is subformula-closed, i.e., if A 2 P�B and B is a subformula of A;

then B 2 P�B: The sets P�C; P�BC and P�Q are also subformula-closed.

2.2. Epistemic Predicate Logic QKD4n and its Propositional Fragment

KD4n

We give the following seven axiom schemata and �ve inference rules: For any formulae

A;B;C, and term t;

L1: A � (B � A);

L2: (A � (B � C)) � ((A � B) � (A � C));

L3: (:A � :B) � ((:A � B) � A);

L4: A ^B � A and A ^ B � B;

L5: A � A _ B and B � A _B;

L6: 8xA(x) � A(t);

L7: A(t) � 9xA(x);

and
A � B A

B
(MP)

A � B A � C

A � B ^ C
(^-Rule)

A � C B � C

A _B � C
(_-Rule)

A � B(a)

A � 8xB(x)
(8-Rule)

A(a) � B

9xA(x) � B
(9-Rule);

where the free variable a does not occur in the lower formulae of 8-Rule and 9-Rule.
The above logical axioms and inference rules form classical logic. We write the

set of L1{L5 and MP, ^-Rule and _-Rule by PCL, and the set of all axioms and

inference rules by QCL. In fact, the choice of a set of formulae is still needed to
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determine a logic. In the following, classical propositional logic is understood to be

PCL within P�BCQ, and classical predicate logic is QCL within P�BC.
The following are axioms and inference rule for belief operators Bi for i = 1; :::; n :

K: Bi(A � C) � (Bi(A) � Bi(C));

D: :Bi(:A ^A);

4: Bi(A) � BiBi(A);

8-B: 8xBi(A(x)) � Bi(8xA(x));

and

Necessitation:
A

Bi(A)
:

In literature, 4 and 8-B are called, respectively, the Positive Introspection axiom and

Barcan axiom. Throughout this paper, we assume the Barcan Axiom in the predicate

case.

Propositional KD4n and predicate QKD4n are de�ned as follows:

KD4n: PCL + (K + D + 4 + Nec) within P�CQ;

QKD4n: QCL + (K + D + 4 + 8-B + Nec) within P�C:

In KD4n; any formulae in the axioms and inference rules are restricted to P�CQ: On
the other hand, in QKD4n, those are restricted to P�C. When we employ P�CQ;

Axioms L6, L7 and 8-B are automatically excluded, but when we do P�C; these
reappear. We remark that all the instances of the axiom schemata for KD4n are

allowed as axioms for QKD4n:

A proof in these logics is de�ned in the standard manner. In QKD4n; for example,

a proof of A in P�C is a �nite tree satisfying the following properties: (1) a formula

in P�C is associated with each node of the tree and A is associated with the root; (2)

the formula associated with each leaf is an instance of the axiom schemata of QKD4n;

and (3) adjoining nodes together with the associated formulae form an instance of

the inference rules of QKD4n:

We say that A is provable in KD4n i� there is a proof of A in KD4n, which is

denoted by `KD4n A: Similarly, we de�ne the provability relation `QKD4n of QKD4
n.

Then it holds that for any A in P�CQ ;

`KD4n A implies `QKD4n A: (2.1)

In fact, the converse holds, too, which we will mention later as Corollary 2.3.

2.3. Kripke Semantics with Constant Domains

Contrary to the multiplicity of syntactical systems to be discussed in this paper, it

su�ces to consider only one semantics. This common semantics together with the

(soundness-) completeness result for each system enables us to make direct compar-

isons of those syntactical systems. The common semantics is the Kripke semantics

with constant domains. As we chose KD4-type logics, we are going to consider only

serial and transitive accessibility relations.
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Recall that the list of function and predicate symbols is given as L = [f0; f1; :::;

P0;P1; :::]:LetM be a nonempty set. A classical interpretation I = [ ~f0; ~f1; :::; ~P0; ~P1; :::]

on M consists of interpretations ~fk and ~Pk ; respectively, with the following condi-

tions:

F1: the interpretation ~fk of each l-ary fk is a function from M l to M ;

F2: the interpretation ~Pk of each l-ary Pk is a function from M l to f>;?g (when

l = 0; ~Pk is simply either > or ?):

A Kripke frame F = (W ;R1; :::; Rn;M) is an (n + 2)-tuple of a set of possible

worlds W; accessibility relations R1; :::; Rn over W and a domain M of individual

variables. We assume the following conditions:

K1: W is an arbitrary nonempty set;

K2: Ri is a subset of W �W for i = 1; :::; n;

K3: M is an arbitrary nonempty set:

An interpretation I is a function which assigns to each w 2 W a classical interpre-

tation I(w) = [ ~f0; ~f1; :::; ~P
w
0 ;

~Pw
1 ; :::] on M with the property that only the interpre-

tations ~Pw
k of predicate symbols Pk may depend upon w but the interpretations ~fk

of function symbol fk are constant over W: A Kripke model M is a pair (F ; I) of a
Kripke frameF and an interpretation I. Since we restrict our attentions to KD4-type

logics, we assume throughout this paper that each accessibility relation Ri is serial

and transitive. That is, we consider only a Kripke frame F = (W ;R1; :::; Rn;M)

where each Ri is serial and transitive.

As the interpretations ~fk of function symbols fk are constant overW , we interpret

free variables as independent of a possible world. Hence, we have the following simple

de�nition: A function � : FV ! M is called an assignment. One assignment � is

used for all possible worlds in W:

Let a pair (I; �) of an interpretation I and an assignment � be given. The

valuation V (t : (I; �)) of a term t is the function from the set of terms to M de�ned

inductively by

T1: V (ak ; (I; �)) = �(ak) for all ak 2 FV ;

T2: V (fk(t1; :::; tl); (I; �)) = ~fk(V (t1; (I; �)); :::; V (tl; (I; �))).

For any free variable a; we write � =
a
�0 i� �(b) = �0(b) for all b 2 FV � fag:

Also, we denote the set of �nite sequences (i1; :::; im) in N by N�:2 Note that the

null sequence � belongs to N�: We say that u 2 W is reachable from w in a Kripke

frame F = (W ;R1; :::; Rn;M) i� there is a �nite sequence fw1; :::; wmg (m � 1)

in W and (i1; :::; im�1) 2 N
� such that w = w1; u = wm and (wt; wt+1) 2 Rit for

t = 1; :::; m� 1:

Let M = (F ; I) be a Kripke model. Then we de�ne the valuation relation

(M; �; w) j= inductively as follows:

E0: for any atomic formula Pk(t1; :::; tl);

2For a di�erent purpose, it would be more convenient to adopt N�� = f(i1; :::; im) 2 N� : it 6= it+1
for t = 1; :::;m� 1g than N�:
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(M; �; w) j= Pk(t1; :::; tl)() ~Pw
k (V (t1; (I; �)); :::; V (tl; (I; �))) = >;

E1: (M; �; w) j= :A() (M; �; w) 2 A;

E2: (M; �; w) j= A � B () (M; �; w) 2 A or (M; �; w) j= B;

E3: (M; �; w) j= A ^B () (M; �; w) j= A and (M; �; w) j= B;

E4: (M; �; w) j= A _B () (M; �; w) j= A or (M; �; w) j= B;

E5: (M; �; w) j= 8xA(x)() (M; �0; w) j= A(a) for all �0 =
a
�;

E6: (M; �; w) j= 9xA(x)() (M; �0; w) j= A(a) for some �0 =
a
�;

E7: (M; �; w) j= Bi(A)() (M; �; v) j= A for any v with (w; v) 2 Ri;

E8: (M; �; w) j= C(A)() (M; �; u) j= A for all u reachable from w;

where a is the �rst variable not occurring in 8xA(x) (or 9xA(x)) in E5 (or E6,

respectively). We writeM j= A i� (M; �; w) j= A for all assignments � and worlds

w 2 W .

The semantic valuation relation (M; �; w) � is completely determined by the

valuations of subformulae.

It is known that E8 has the following equivalent formulation:

Lemma 2.1. In the de�nition of (M; �; w) j=; E8 can be replaced by

E8�: (M; �; w) j= C(A)() (M; �; u) j= Be(A) for all e 2 N
�;

where Be(A) is an abbreviation of Bi1Bi2 :::Bim(A) for e = (i1; :::; im) 2 N
�:

Condition E8� describes the intuitive understanding of the common knowledge

of A that A is true, each player believes A, each believes that each believes A; and

so on. If one wants to formulate \common beliefs", it is de�ned as the formula

B1C(A)^ :::^BnC(A): Therefore, we focus on common knowledge in this paper.

The following completeness result has been known in literature (cf., Hughes-

Cresswell [6]).

Theorem 2.2.(1)(Completeness for KD4n). Let A be a formula in P�CQ . Then
`KD4n A if and only ifM j= A for all Kripke modelsM = (F ; I).

(2)(Completeness for QKD4n). Let A be a formula in P�C. Then `QKD4n A if

and only ifM j= A for all Kripke modelsM.

The converse of (2.1) is a simple consequence from Theorem 2.2, which we write

down explicitly, since the same type of comparisons will be made throughout the

paper.

Corollary 2.3 (Conservativity of QKD4n upon KD4n). Let A be a formula

in P�CQ. Then `KD4n A if and only if `QKD4nA:

Before going to the next section, we should state Wolter's [21] result, which is

one of the main concerns of this paper. We write j= A i� M j= A for all Kripke

modelsM.

Theorem 2.4 (Non-Recursive-Enumerability). Suppose that the language L =

[f0; f1; :::;P0;P1; :::] contains at least nine unary predicate symbols. Then the set

fA 2 P : � Ag is not recursively enumerable:
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This theorem does not depend upon the particular choice of the assumptions of

transitivity and seriality on frames. It would remain to hold even if we strengthen

the assumptions for frames to, for example, the S5-assumption that each Ri is an

equivalence relation. For details, see Wolter [21].

Throughout the remaining part of this paper to avoid repetitive quali�cations, we

assume that the language L = [f0; f1; :::;P0;P1; :::] has at least nine unary predicate

symbols. Wolter proved in [20] the above non-recursive-enumerability result under

this assumption, though Wolter [21] gave a di�erent proof under the assumption of

an in�nite countable number of unary predicate symbols.

The set of provable formulae in QKD4n is recursively enumerable, since QKD4n

is recursively axiomatizable. Therefore, it follows from Theorem 2.2 that the set

fA 2 P�C : � Ag is recursively enumerable (and so is fA 2 P�CQ : � Ag): There-

fore, Theorem 2.4 is a phenomenon caused by introducing common knowledge into

QKD4n. In subsequent sections, we will discuss more exactly when such a phenom-

enon occurs.

3. Common Knowledge Logics HM and QHM

Halpern-Moses [4] extended various multi-agent propositional epistemic logics into

�xed-point logics to incorporate common knowledge. A variant is the �xed-point

extension of KD4n: In this paper, since we focus on the KD4-type logics, we give the

name HM to the �xed-point extension of KD4n; and QHM to the predicate extension

of HM. In fact, it follows from Wolter's non-recursive enumerability theorem that

QHM is Kripke incomplete. We are going to consider how the incompleteness result

should be understood.

Consider the following axiom schema and inference rule:

CA: C(A) � A^B1C(A)^ :::^BnC(A);

CI:
D � A ^ B1(D) ^ ::: ^ Bn(D)

D � C(A)
:

Logics HM and QHM are de�ned, respectively, as follows:

HM: KD4n + (CA+CI) within P�Q ;

QHM: QKD4n + (CA+CI) within P :

Axiom CA is often called the �xed-point property (with respect to A): It follows from

this axiom in QHM (as well as in HM) that C(A) implies Be(A) = Bi1 :::Bim(A)

for all e = (i1; :::; im) 2 N�; which is explicitly written as Lemma 3.1. That is,

these derived formulae show rather the intended meaning of \common knowledge".

Inference rule CI means that if a formulaD has the �xed-point property with respect

to A, then D implies C(A); that is, C(A) is the deductively weakest formula having

the �xed-point property. Inference rule CI is called the �xed-point rule. Logics HM

and QHM are de�ned by the addition of the same axiom schema and inference rules

to KD4n within P�Q and to QKD4n within P .

Our concern is to consider the predicate extension QHM, but not HM. Therefore,

we will mention properties only on QHM, and if some is need to make comparisons

with HM, we would mention it also on HM.

9



Lemma 3.1. `QHM C(A) � Be(A) for all e 2 N
�:

The completeness theorem was proved for HM by Halpern-Moses [4].

Theorem 3.2 (Completeness for HM). For any A 2 P�Q; `HM A if and only if

� A:

Let us return to predicate QHM. It is straightforward to see that QHM is sound

with respect to the Kripke semantics. However, it is incomplete, which is an implica-

tion of Wolter's non-recursive enumerability theorem (Theorem 2.4). Indeed, since

CA and CI as well as the others of QKD4n are �nitary; the set fA 2 P : `QHM Ag
is recursively enumerable: However, the set fA 2 P : � Ag is not by Theorem 2.4.

We summarize these results as the following theorem.

Theorem 3.3 (1)(Soundness). For any A 2 P ; if `QHM A; then � A:

(2)(Incompleteness). There exists a formula A 2 P such that � A but 0QHM A:

The above incompleteness result does not rely upon a particular choice of a

KD4-type logic. Indeed, Theorem 2.4 may be stated in a more elaborated manner.

It states that incompleteness would remain even if we strengthen the logic by adding

standard propositional axioms. For this, see Wolter [21].

We may see the di�erence between the above two theorems from two viewpoints:

�nitary viewpoint and in�nitary viewpoint.

First, let us see the above theorems from the �nitary point of view. As stated

in Section 2, both KD4n and QKD4n are Kripke complete and have recursively enu-

merable sets of provable formulae. In the propositional case, HM is complete and

fA 2 P�Q : � Ag is also recursively enumerable, while in the predicate case, QHM

is incomplete and fA 2 P : � Ag is not recursively enumerable. Although HM and

QHM are obtained from KD4n and QKD4n; respectively, by adding both �nitary ax-

iom schema CA and inference rule CI, only logic QHM turns to be incomplete. Hence

this incompleteness is an unexpected jump. From the �nitary point of view, the in-

completeness of QHM may be regarded as a conundrum of making an unexpected

jump.

Second, let us see the above theorems from the viewpoint of in�nitary logics.

In the in�nitary approach, various completeness results are known, which will be

discussed in Sections 4 and 6. Indeed, Kripke completeness is recovered in the sense

that the strengthened provability in an in�nitary approach captures fA 2 P : � Ag:
In the propositional case, Kaneko [7] proved that HM can be regarded as a fragment

of in�nitary propositional epistemic logics. Hence we can regard HM as well as QHM

as having already an in�nitary aspect in part. The non-recursive-enumerability of

fA 2 P : � Ag is better understood from this point view. Hence, from the in�nitary

point of view, the completeness of HM may be regarded rather as a conundrum.

Before going to the next section, we mention two other lemmas on QHM and HM

in order to relate them to other logical systems. The �rst is needed to motivate the

two other common knowledge logics given in Section 4 . The second will be used to

consider the C-fragment of QHM, which is closely related to the predicate extension

of uni-modal S4.

The �rst lemma is stated as a derived inference rule in the semantic validity j=.
We omit the proof of the lemma.

10



Lemma 3.4. If j= D � Be(A) for all e 2 N
�; then j= D � C(A):

By the completeness for HM (Theorem 3.2), we restate this lemma as follows:

for A;D 2 P�Q;

(0HM): if `HM D � Be(A) for all e 2 N
�; then `HM D � C(A):

Lemma 3.1 and this claim describe the intended meanings of common knowledge.

Therefore, it looks natural to de�ne a common knowledge logic by adding these to

KD4n and QKD4n: However, since the in�nite conjunction is implicit in common

knowledge operator C, the Barcan property of belief operator Bi with respect to C

is a problem. This Barcan property is captured by assuming C(A) � BiC(A) for

i = 1; :::; n: In the propositional case, we would obtain a logic equivalent to HM by

adding, to KD4n; the instances of Lemma 3.1, inference rule 0HM and the Barcan

axiom for each Bi with respect to C: In the predicate case, we need stronger inference

rules than 0HM. These are the subjects of the next section.

In order to consider the question of what kind of formulae make a discrepancy

between provability `QHM and validity j=; the following lemma will be useful. It en-

ables us to make comparisons of the C-fragment of QHM with the predicate extension

QS4(C) of uni-modal S4 with its modal operator C.

Lemma 3.5.(1): `QHM C(A � B) � (C(A) � C(B));

(2): `QHM C(A) � A;

(3): `QHM C(A) � CC(A);

(4): if `QHM A; then `QHM C(A);

(5): `QHM 8xC(A(x)) � C(8xA(x)):

Proof. We prove (1), (4) and (5).

(1): It su�ces to prove `QHM C(A � B)^C(A) � C(B): Since `QHM C(A �
B)^C(A) � B and `QHM C(A � B)^C(A) � Bi (C(A � B) ^ C(A)) for all i 2 N

by CA, we have, by CI, `QHM C(A � B)^C(A) � C(B):

(4): Suppose `QHM A: Then `QHM Bi(A) for all i 2 N by Necessitation for Bi: Hence

`QHM A � A^B1(A) ^ � � �^Bn(A): By CI, `QHM A � C(A): Hence `QHM C(A):

(5): Since `QHM C(A(a)) � A(a)^B1C(A(a))^ :::^BnC(A(a)) by CA, we have `QHM
8xC(A(x)) � 8xA(x) ^ 8xB1C(A(x)) ^ :::^ 8xBnC(A(x)): By 8-Bi; we have `QHM
8xC(A(x)) � 8xA(x)^B1(8xC(A(x))) ^ :::^Bn(8xC(A(x))): Regarding this as the

upper formula of CI, we have `QHM 8xC(A(x)) � C(8xA(x)):

Lemma 3.5.(5) is the Barcan formula for C with respect to 8:
Let QS4(C) be the predicate extension of uni-modal S4 with the Barcan axiom

with respect to 8, i.e., it is the logic de�ned within P�B de�ned the axioms and

inference rules of classical logics as well as the formulae (1)-(3), (5) and inference

rule (4) of Lemma 3.5 for the modal operator C: The provability relation of QS4(C)

is denoted by `QS4(C) : Lemma 3.5 implies that for any A 2 P�B; if `QS4(C) A; then
`QHM A: In fact, the converse holds, too, which will be discussed in Section 5.
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4. Common Knowledge Logics CX, QCX and CY, QCY

As stated before, no �nitary extensions of QKD4n capture the semantic validity �.

In this section, we present extensions CX, CY and QCX, QCY of KD4n and QKD4n:

These keep, respectively, the sets P�Q and P of �nitary formulae, but allow in�nitary

proofs. In the propositional case, both CX and CY turn to be equivalent to HM. In

the predicate case, QCY is Kripke complete, and thus di�ers from QHM, but QCX

is not known to be equivalent to QHM, QCY or neither.

4.1. Logics CX and QCX

To de�ne CX and QCX, we adopt the formulae in Lemma 3.1 as an axiom schema

and the inference rule corresponding to Lemma 3.4:

CA�: C(A) � Be(A); where e 2 N
�;

CI�0:
fD � Be(A) : e 2 N

�g

D � C(A)
:

Although these two may look su�cient to determines C(A) to be the common knowl-

edge of A, the Kripke semantics has the Barcan property of Bi with respect to op-

erator C; i.e., � C(A) � BiC(A) for all i 2 N: Therefore, we assume these Barcan

formulae, too:

CB: C(A) � BiC(A) for all i 2 N:

To have the balance between the syntactical system and Kripke semantics, we need

this axiom CB: Note that Axiom CA has CB as part.

We de�ne CX and QCX as follows:

CX: KD4n + (CA�+ CI�0+ CB) within P�Q;

QCX: QKD4n + (CA�+ CI�0+ CB) within P :

Inference rule CI�0 requires countable numbers of upper formulae. Accordingly, the

de�nition of a �nitary proof should be slightly modi�ed into a countable tree where

every path from the root is �nite and a countably in�nite branching occurs with

inference CI�0. In�nitary proofs are allowed both in the propositional and predicate

cases, but it will turn out that new provable formulae appear only in the predicate

case.

Logic CX is deductively equivalent to the logic given in Kaneko [7], which is

formulated as a sequent calculus.

Before stating the completeness result on CX, we mention the relationship of CX,

QCX to HM, QHM:

Lemma 4.1.(1)(CA): `QCX C(A) � A^B1C(A) ^ :::^BnC(A);

(2)(CI): if `QCX D � A^B1(D)^ :::^Bn(D); then `QCX D � C(A):

These claims hold with the replacement of QHM with HM.

Proof. (1) follows from CA� and CB.
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(2): Suppose `QCX D � A^B1(D)^ :::^Bn(D): Then we can prove `QCX D � Be(A)

for all e 2 N�: Therefore, by CI�0; `QCX D � C(A):

We have the following theorem.

Theorem 4.2.(1):(Equivalence of HM and CX). For any A 2 P�Q; `HM A if and

only if `CX A:

(2): For any A 2 P ; if `QHM A; then `QCX A:

Proof. Lemma 4.1 implies (2) as well as the only-if part of (1). The if part of (1)

follows from CA and 0HM stated after Lemma 3.4.

The completeness of CX is a by-product of Theorem 4.2.(1) and Theorem 3.2.

Nevertheless, since we do not have the completeness for QHM stated in Theorem

3.3, we cannot, at present, guarantee parallel results in the predicate case.

Remark: Two logics KD4n + (CA�+ CI�0) within P�Q and QKD4n + (CA�+ CI�0)

within P look natural. However, the following is known for the propositional case.

Axiom CB is not provable in KD4n + (CA�+ CI�0): This fact implies that KD4n +

(CA�+ CI�0) is Kripke incomplete. This result is obtained as follows: The Gentzen-

style sequent formulation of KD4n + (CA�+ CI�0) enjoys cut-elimination, which im-

plies the full subformula property. Using this subformula property, we can prove that

CB is not provable in KD4n + (CA�+ CI�0): This method is not directly extended to

the predicate case because of the Barcan axiom for Bi with respect to 8 (it can be

in the absence of the Barcan axiom).

4.2. Logics CY and QCY

Logic CX is complete as stated above, but we do not know whether or not its pred-

icate extension QCX is complete. Nevertheless, we would obtain completeness if

inference rule CI�0 is strengthened into the following:

CI�:
fD � T (Be(A)) : e 2 N

�g

D � T (C(A)):
;

where T (E) denotes any formulae of the following form:

Bjk(Dk � ::: Bj2(D2 � Bj1(D1 � E)):::):

Note that D1; :::; Dk are any formulae in P and that (jk; :::; j1) is any sequence in

N�. When k = 0; CI� becomes CI�0.

We de�ne CY and QCY as follows:

CY: KD4n + (CA�+CI�) within P�Q:

QCY: QKD4n + (CA�+CI�) within P :

Proofs in these logics are de�ned in the similar manner as in CX and QCX.

It can be veri�ed that CY and QCY are extensions of CX and QCX, as follows.

First, CI�0 is a special case of CI
�; as already stated.. Second, CB is also provable in

QCY. Indeed, since `QCX C(A) � Bi(> � Be(A)) for all e 2 N
� by CA�, we have
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`QCY C(A) � Bi(> � C(A)); i.e., `QCY C(A) � BiC(A); where > denotes :p _ p

for an atomic formula p.

Lemma 4.3.(1): For any A 2 P�Q; `CX A implies `CY A:

(2): For any A 2 P ; `QCX A implies `QCY A:

We have the following completeness theorem for CY and QCY.

Theorem 4.4 (Completeness for CY and QCY).

(1): For any formula A 2 P�Q; `CY A if and only if � A:

(2): For any formula A 2 P ; `QCY A if and only if � A:

Since Lemma 4.3.(1) states that CY is an extension of CX, and since CX is Kripke

complete, we would obtain Theorem 4.4(1) if CI� is sound in any Kripke frame. This

veri�cation is straightforward. Hence, the completeness part of Theorem 4.4.(2)

is crucial here. Tanaka [16] discusses this completeness of QCY as well as other

possible variants. His proof is given under the language with no function symbols.

Although function symbols are unavoidable for future applications, a proof of (2)

for the language with function symbols can be obtained by modifying Tanaka's [16]

proof.

Since fA 2 P : � Ag is not recursively enumerable by Theorem 2.4, Theorem

4.4.(2) implies that the set fA 2 P : `QCY Ag is also not recursively enumerable.

This non-recursive-enumerability may be regarded as caused by admitting in�nitary

proofs. On the other hand, since fA 2 P�Q : `CY Ag coincides with

fA 2 P�Q : � Ag = fA 2 P�Q : `HM Ag = fA 2 P�Q : `CX Ag;

the set fA 2 P�Q : `CY Ag remains to be recursively enumerable, even though we

allow in�nitary proofs in CY. Therefore, an in�nitary proof is not solely a cause for

non-recursive-enumerability.

Now, the jump occurring in QHM discussed in Section 3 is regarded as a gap

from QKD4n to QCY. There is no gap in the propositional case. Now, it is clearer

what the conundrums discussed in Section 3 are.

It follows from Theorem 4.4 that QCY is a conservative extension of CY, which

is explicitly stated as the following corollary.

Corollary 4.5. For any A 2 P�Q; `CY A if and only if `QCY A:

We will discuss the relationship between QCY and QHM in the next section.

5. Comparisons of Common Knowledge Logics

In this section, we make comparisons of logics QKD4n; QHM, QCX, QCY and

QS4(C) as well as their propositional fragments. It will be known from these com-

parisons except with QCX that if one is an extension of another, the extension is

conservative upon the other. In addition of this, we will get a good but still partial

answer to the question of what the di�erence between QHM and QCY is. However,

it will remain open whether QCX coincides with QHM or QCY (or with neither).

We will obtain also the result that any formula which is valid but is not provable in
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QHM contains a belief operator Bi; the common knowledge operator C as well as a

quanti�er.

First, we compare the provabilities of our logics for propositional formulae. Re-

mark that we can add the semantical validity � A to the list of the provability

statements in the following theorems.

Theorem 5.1 (Propositional Formulae). For any formula A 2 P�Q; the follow-
ing six statements are all equivalent: (1) `HM A ; (1Q) `QHM A ; (2) `CX A ; (2Q):

`QCX A ; and (3) `CY A ; (3Q) `QCY A:

If A is C-free, then we can add (0) `KD4n A and (0Q) `QKD4n A to the above list.

Proof. By the de�nition of each logic, we have (1) ) (1Q); (2Q) ) (3Q) and

(2) ) (3): Theorem 4.2.(2) states (1Q) ) (2Q). Corollary 4.5 states (3) , (3Q).

Theorem 4.2.(1) states (1), (2). These are described as follows:

(1) `HM A , (2) `CX A ) (3) `CY A

+ + m
(1Q) `QHM A ) (2Q) `QCX A ) (3Q) `QCY A

Finally, we get (1), (3) from Theorems 3.2 and 4.4.(1). Thus, we have the equiva-

lences of all the six claims.

It is an implication of Theorem 5.1 that QHM, QCX, QCY and their propositional

fragments are all conservative extensions of KD4n:

Next, we compare the provabilities of these logics for C-free formulae:

Theorem 5.2 (C{Free Formulae). For any A 2 P�C; the following four are

equivalent: (1) `QKD4n A; (2) `QHM A; (3) `QCX A; and (4) `QCY A:

Proof. By de�nitions, we have (1)) (2) and (3)) (4). By Theorem 4.2.(2), (2))
(3) holds. Conversely, suppose (4): By Theorem 4.4.(2), we have � A: Since A does

not contain C; the semantic validity of A in QCY is equivalent to that in QKD4n.

By the completeness for QKD4n (Theorem 2.2.(2)), we have `QKD4n A: Thus, (1),

(2), (3) and (4) are all equivalent.

One implication of Theorem 5.2 is that QHM, QCX and QCY are all conservative

extensions of QKD4n:

Next, consider B-free formulae, i.e., ones in P�B: That is, we consider the prov-

abilities of formulae including no B1; :::;Bn in our predicate extensions of KD4n: In

this consideration, we focus on the predicate extension QS4(C) of uni-modal S4, since

comparisons with it give good hints to understand common knowledge (propositional

and predicate) extensions of KD4n:

In the next lemma,  is the translator from P to P�B to associate, with each A;

the formula  (A) obtained from A by replacing all occurrences B1; :::;Bn in A by C:

For example,  (C(A)� Bi1 :::Bim(A)) = C( A) � C:::C( A): Note  A = A for any

A 2 P�B:

Lemma 5.3. For any A 2 P , if `QCY A; then `QS4(C)  (A):

Proof. It su�ces to prove that `QS4(C)  (D) for all axioms D for QCY, and that

the inference rules translated by  from those for QCY are admissible in QS4(C). If
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D is an instance of L1{L7, then `QS4(C)  (D): Let D be an instance of Axiom K; i.e.,

Bi(A � B) � (Bi(A) � Bi(B)): Then  (D) = C( A �  B) � (C( A) � C( B));

which is an instance of an axiom in QS4(C): In the same manner, if D is an instance

of D or 4; we have `QS4(C)  (D): Consider the Barcan 8xBi(A(x)) � Bi(8xA(x)):
The translation is  (8xBi(A(x)) � Bi(8xA(x))) = 8xC( A(x)) � C(8x A(x));

which is an instance of the Barcan axiom for operator C. Consider an instance of

CA� : C(A) � Be(A); where e = (i1; :::; im): Then  (C(A) � Be(A)) = C( A) �

C:::C( A): This is provable in QS4(C).

Regarding the inference rules, here we consider only Necessitation and CI�:

Necessitaiton: Let `QS4(C)  (A): Then `QS4(C)C( A); which is equivalent to

`QS4(C)  (Bi(A)):

CI�: Suppose `QS4(C)  (D � T (Be(A))) for all e 2 N�: Consider the speci�c

one `QS4(C)  (D � T (B1(A))): Since  (D � T (B1(A))) is  (D) �  T (B1(A)); and

since  T (B1(A)) =  (Bjm(Dm � ::: Bj2(D2 � Bj1(D1 � B1(A)):::)) = C( Dm � :::

C( D2 � C( D1 � C( A)):::) =  (Bjm(Dm � ::: Bj2(D2 � Bj1(D1 � C(A)):::)) =

 T (C(A)); we have `QS4(C)  (D � T (C(A))):

In fact, the provabilities of QHM, QCX and QCY for B-free formulae collapse

into that of the predicate extension QS4(C) of uni-modal S4, whose modality is C.

Theorem 5.4 (B-Free Formulae). For any formula A 2 P�B; the following four

statements are all equivalent: (1): `QHM A ; (2): `QCX A ; (3): `QCY A ; and (4):

`QS4(C) A.

Proof. By Theorem 4.2.(2), we have (1)) (2). By de�nition, (2)) (3). By Lemma

5.3, we have (3) ) (4). Suppose (4). Then there is a proof of A in logic QS4(C): It

su�ces to show that the logical axioms and inference rules in QS4(C) are admissible

in QHM. These are stated in Lemma 3.3.

In the propositional case, we have the parallel result to Theorem 5.4: for any

formula A 2 P�BQ; (1�Q): `HM A ; (2�Q): `CX A ; (3�Q): `CY A ; and (4�Q):

`S4(C) A as well as (1){(4) of Theorem 5.4 are all equivalent.

Although logic QHM is incomplete, Theorems 5.1 and 5.4 imply that QHM is a

conservative extension of HM and QKD4n: Of course, QCY is a conservative exten-

sion of CY and QKD4n; too. Therefore, the extension relation among these logics

described in Diagram 1.1 keeps conservativity.

As state in the beginning of this section, we can add the semantic validity � A

to the list in the above three theorems. Since these theorems imply that all the

sets fA 2 P�Q : � Ag; fA 2 P�B : � Ag and fA 2 P�C : � Ag are all recursively

enumerable, their union fA 2 P�Q[P�B[P�C : � Ag is also recursively enumerable.

Let PQF be the set of all quanti�er-free formulae in P . We de�ne the quanti�er-

free fragments KD4nQF; HMQF, CXQF and CYQF in the same manners as KD4n;

HM, CX and CY by adopting PQF rather than P�Q: Then all the theorems on

these propositional fragments remain true for KD4nQF; HMQF, CXQF and CYQF:

The last conclusion of the above remark becomes that fA 2 PQF [ P�B [ P�C :

� Ag is recursively enumerable. Note that `QHM A holds for any formula A in

fA 2 PQF [ P�B [ P�C : � Ag. Hence, we have the following theorem.

Theorem 5.5 (Di�erence between QCY and QHM)(1): For any A 2 P ; if
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`QCY A; a fortioi, � A; but 0QHM A; then A contains a belief operator Bi for at

least one i; the common knowledge operator C and a quanti�er.3

(2): The set fA 2 P : `QCY A and 0QHM Ag is not recursively enumerable.

It is an important open problem to �nd a particular formula for (1). After

all, such a formula includes Bi for some i; C as well as 8 (or 9): Conversely, for
other formulae, the provability `QCY coincides with `QHM : In the game theoretical

applications in Kaneko-Nagashima [8] and [9], we have met formulae including C and

quanti�ers. Even formulae we can think of in game theoretical applications are not

ones for (1).

We have been focussed on extensions of QHM rather than its fragments. On

the other hand, Sturm-Wolter-Zakharyaschev [15] considered the monodic fragment

of QHM under the assumption that the language has no m-ary function symbols

for m � 1. We say that a formula A is monodic i� each of any subformula Bj(D)

(j 2 N) and C(D) of A contains at most one free variable. Without the assumption

of no m-ary function symbols with m � 1, the formula obtained from a monadic

formula by substitution with a term may not be monodic. They proved the Kripke

completeness of the monodic fragment of QHM under the assumption of no m-ary

function symbols with m � 1. This fragment is located between HM and QHM.

Thus, the gap from QHM to QCY occurs after the monodic fragment of QHM.

6. Game Logic QGL!: In�nitary Approach

Since common knowledge is an in�nitary concept, it would be a direct approach to

formulate common knowledge in an in�nitary extension of KD4n. Kaneko-Nagashima

[8] and [9] took this approach and provided an in�nitary epistemic logics GL! and

QGL! ; where common knowledge is explicitly formulated as an in�nitary conjunc-

tive formula. They developed these systems from the proof-theoretic point of view,

which are now expected to be Kripke-complete from the result of Tanaka-Ono [19]

and Tanaka [18]. In the propositional case, Kaneko [7] showed that logic HM is

faithfully embedded into GL! (with a slight restriction).4 In this section, we will

give a connection from the logic QCY to QGL! . As in the previous sections, we will

focus on the predicate case, but all the results in this section are obtained also in

the propositional case.

First, we add new conjunction and disjunction symbols
V

and
W

to the list of

primitive symbols in Section 2.1. These are applied to in�nite sets of formulae.

Let Q be a given set of formulae. We de�ne E(Q) as follows:

IF1: Q0 = Q [ f(
V
�); (

W
�) : � is a countably in�nite subset of Q containing at

most a �nite number of free variablesg;

IF2: E(Q) is the set of formulae de�ned fromQ0 by the standard �nite induction; that

is, (1): any expression in Q0 belongs to E(Q); (2): if A;B 2 E(Q); then (:A); (A ^

3Tanaka [16] showed that the occurrence of C in A must be positive, by applying the method of

tree-sequent calculus.
4Heifetz [5] discussed the in�nitary approach and �xed-point approach in the propositional case,

by unifying these approaches into one system and proving its Kripke completeness.
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B); (A_B); (A � B) and B1(A); :::;Bn(A) belong to E(Q); and (3): if A(a) 2 E(Q);

then 8xA(x) and 9xA(x) belong to E(Q):

By replacingQ by E(Q); we de�ne E2(Q) = E(E(Q)): In general, we de�ne Em+1(Q) =

E(Em(Q)) for any nonnegative integer m: We adopt the set of formulae E!(P�C) :=S
m<! E

m(P�C); taking P�C as Q. In the following, we call � an allowable set i� �

is a countably in�nite set of formulae in Em(P�C) for some m < ! and contains a

�nite number of free variables:

In the above construction of the sets of formulae, we do not include common

knowledge operator symbol C; since common knowledge is now expressed as an

in�nitary conjunctive formula in E!(P�C). That is, the common knowledge of A

is expressed as V
fBe(A) : e 2 N

�g; (6.1)

which we denote by C0(A): Note that syntactically, this is an abbreviation of (6.1)

and di�ers from C(A):

In the �nitary language, the conjunctive symbol ^ and disjunctive symbol ^ are

applied to two formulae. Now, larger
V

and
W

are applied to allowable sets � of

formulae. Therefore, we add the modi�cations of the axioms L4, L5 and inference

rules ^-Rule, _-Rule: for any allowable set � of formulae,

L4! :
V
� � A; where A 2 �;

L5! : A �
W
�; where A 2 �;

and
fA � B : B 2 �g

A �
V
�

(
V
-Rule)

fA � B : A 2 �g
W
� � B

(
W
-Rule):

We denote the union of the axioms for QKD4n and L4!; L5! ;
V
-Rule;

W
-Rule by

QKD4n! :

Since an allowable set � is in�nite, we need also the Barcan property on each

belief operator Bi with respect to
V
: for any allowable set �;

V
-B:
V
Bi(�) � Bi(

V
�);

where Bi(�) := fBi(A) : A 2 �g. In
V
Bi(�) and Bi(

V
�); player i believes every

formula in �; and in the latter, he believes additionally the entirety of �: Hence, the

latter is regarded as stronger than the former. Indeed, the converse is
V
-B. To make

direct comparisons with QCY, we need axiom
V
-B:

We de�ne GL! and QGL! by

GL! : KD4n! +
V
-B within E!�Q(P�CQ);

QGL! : QKD4n! +
V
-B within E!(P�C):

Recall that E!�Q(P�CQ) is the propositional fragment of E!(P�C): In the following,

however, we focus only on QGL! :

A proof in QGL! is de�ned to be a countable tree in the same manner as in QCX.

We write `Q! A i� there is a proof of A in QGL! :

First, we show that operator C0(�) in QGL! has the same properties as C in

QCY.

Lemma 6.1.(1): `Q! C0(A) � Be(A) for all e 2 N
�;
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(2): If `Q! D � T (Be(A)) for all e 2 N
�; then `Q! D � T (C0(A)); where T (E) is

any formula considered in inference CI.

Proof. (1) follows from the de�nition of C0(A):

Consider (2). We prove by induction on the structure of T that `Q!
V
fT (Be(A)) :

e 2 N�g � T (C0(A)):When T is the null symbol, the assertion holds.

Let T (Be(A)) be written as Bjm(Dm � :::Bj2(D2 � Bj1(D1 � Be(A))):::): Sup-

pose `Q!
V
fT (Be(A)) : e 2 N

�g � T (C0(A)): Then `Q! (Djm+1
�
V
fT (Be(A)) :

e 2 N�g) � (Djm+1
� T (C0(A))): Hence `Q! Bjm+1

(Dm+1 �
V
fT (Be(A)) : e 2

N�g) � Bjm+1
(Djm+1

� T (C0(A))): On the other hand, since `Q!
V
fBjm+1

(Dm+1 �
T (Be(A)) : e 2 N�g � Bjm+1

(Dm+1 �
V
fT (Be(A)) : e 2 N�g), we have `Q!V

fBjm+1
(Dm+1 � T (Be(A))) : e 2 N

�g � Bjm+1
(Dm+1 � T (C0(A))):

The semantic valuation (F ; �; w) � of Subsection 2.3 can be applied to any for-

mula in E!(P�C) just by modifying E3 and E4 into the following: for any allowable

sets � :

E3!: (M; �; w) j=
V
�() (M; �; w) j= A for all A 2 �;

E4!: (M; �; w) j=
W
�() (M; �; w) j= A for some A 2 �:

Then we have the following completeness, which is obtained by modifying the

proof of the completeness result for QCY. (See the Appendix A, Remark A.12).

Theorem 6.2 (Completeness for QGL!). For any A 2 E
!(P�C); `Q! A if and

only ifM � A for all modelsM:

In the comparison of in�nitary QGL! with QCY, the following formulae in

E!(P�C) are essential. We call a formula A in E!(P�C) a cc-formula i� (1) no

in�nitary disjunctions occur in A and (2) if
V
� is a subformula of A; then

V
� is

expressed as C0(B) for some B:

We will obtain a cc-formulae by translating a formula in P by interpreting C(�)

as C0(�): By this translation, P is embedded into E!(P�C): We de�ne  C : P !
E!(P�C) by

T0:  C(A) = A for all atomic A;

T1:  C(:A) = : C(A);

T2:  C(A � B) =  C(A) �  C(B);

T3:  C(A ^B) =  C(A) ^  C(B); and  C(A _B) =  C(A) _  C(B);

T4:  C(8xA(x)) = 8x C(A(x)); and  C(9xA(x)) = 9x C(A(x));

T5:  C(Bi(A)) = Bi( C(A));

T6:  C(C(A)) =
V
fBe( C(A)) : e 2 N

�g (= C0( C(A))):

It is easy to see that  C(A) is a cc-formula for any A 2 P : We can prove also the

following lemmas.

Lemma 6.3.  C is a bijection from P to the set of all cc-formulae:

Lemma 6.4. For any A 2 P ; � A if and only if �  C(A):

Translation  C embeds logic QCY into QGL! :
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Theorem 6.5 (Faithful Embedding). For any A 2 P , `QCY A if and only if

`Q!  C(A):

Proof. Suppose `QCY A: Note that `Q!  C(B) for any instance B of the axioms for

QCY: CA� and CI� are already veri�ed in Lemma 6.1, and the classical inference rules

translated by  C are admissible in QGL!: Thus, a proof of A in QCY is translated

into that of  C(A) in QGL! : Therefore, `Q!  C(A):
Suppose `Q!  C(A): By Theorem 6.2, we have �  C(A): This is equivalent to

� A by Lemma 6.4. Hence `QCY A by the completeness for QCY (Theorem 4.4).

In the propositional case, we have also the above faithful embedding theorem.

It is an improvement of the embedding theorem obtained in Kaneko [7] in that no

restriction on the ^-B axiom is needed here, while the ^-B axiom is restricted only

to the cc-formulae in [7].

After all, the set fA 2 E!(P�C) : `Q! A and A is a cc-formulag is not recursively
enumerable, since fA 2 P : `QCY Ag is not recursively enumerable by Wolter's

result and completeness for QCY. This result looks natural in that QGL! is already

an in�nitary logic. Nevertheless, the same embedding holds in the propositional case,

but the set fA 2 E!�Q(P�CQ) : `! A and A is a cc-formulag is recursively enumerable,

where `! is the provability relation of propositional GL!. Therefore, a conundrum

still remains, but we know now that Wolter's non-recursive enumerability result is

genuinely a problem in the predicate case.

The �nal remark is a larger in�nitary logics than QGL! and GL! . Possible candi-

dates are QL!1!(QKD4
n) and L!1!(KD4

n); which is more standard in the literature

of in�nitary logics (cf., Karp [10]). As far as we assume proper Barcan axioms, we

would have the same embedding theorems. For larger sets of formulae create no fur-

ther di�culties. In this sense, QGL! and GL! are the smallest choices of in�nitary

extensions so that all of QCY and CY ( and HM) are faithfully embedded.

(The following Appendices are included only in the discussion paper.)

Appendix A: Proof of the Completeness for QCY

In this appendix, we prove the completeness theorems for logic QCY (Theorem

4.3), using an algebraic method along the line of Rasiowa-Sikorski [14]. The proof

here is essentially the same as that given in Tanaka [16] except the treatment of

function symbols here.

In the �rst subsection, we will provide some algebraic notions and two key lem-

mas, which are slightly modi�ed from the Rasiowa-Sikorski lemma and a lemma

given in Tanaka-Ono [19].

In the following, we will discuss Theorem 4.3 in the predicate case. In the propo-

sitional case, our proofs can be modi�ed without di�culty.

The soundness part of Theorems 4.3 are standard, only noting the semantic

validity relation � satis�es the inference rule AI� of QCY.

A.1 Some Algebraic Notions
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Consider a Boolean algebra (B;u;t;�; 0; 1):We de�ne a � b i� a t b = b; and

write a! b for �a t b: Then � is a lattice ordering on B. We say that a nonempty

subset F of B is a �lter i� (1): a � b and a 2 F imply b 2 F and (2): a; b 2 F

implies a u b 2 F: We say that a �lter F is prime i� (1): F 6= B and (2): a t b 2 F
implies a 2 F or b 2 F: For any subset S of B; the greatest lower bound of S in

(B;u;t;�; 0; 1) is denoted by uS; and the least upper bound of S is denoted by tS:
Note that uS and tS may not exist, but if either exists, it is unique.

Let (Q1;Q2) be a pair of countable sets of nonempty subsets of B so that uQ1

and tQ2 exist for all Q1 2 Q1 and Q2 2 Q2: We say that a prime �lter F is a

(Q1;Q2)-�lter i�

(1): for any Q1 2 Q1; Q1 � F implies uQ1 2 F ;

(2): for any Q2 2 Q2; tQ2 2 F implies Q2 \ F 6= ;:

The following is known as the Rasiowa-Sikorski lemma (cf., [14]).

Lemma A.1. Let B be a Boolean algebra, and (Q1;Q2) a pair of countable sets of
nonempty subsets of B satisfying that uQ1 and tQ2 exist for any Q1 2 Q1; Q2 2 Q2:

For a; b 2 B; if a � b; then there is a (Q1;Q2)-�lter F such that a 2 F and b =2 F:

We prepare one more concept. We say that B = (B;u;t;�; 0; 1;21; :::;2n) is a

multi-modal algebra i�

(1): (B;u;t;�; 0; 1) is a Boolean algebra;

(2): for i 2 N; 2i is an operator on B satisfying the property that 2i1 = 1 and

2i(a u b) = 2ia u 2ib for all a; b 2 B:

We denote the set of all (Q1;Q2)-�lters of B by F(Q1;Q2)(B): The following lem-

mas, A.2 and A.3; are Lemmas 2.7 and 2.8 of Tanaka-Ono [19]. Lemmas A.1 and

A.3 will be used in the proof of the completeness.

Let H be a �lter of a Boolean algebra B : We de�ne a binary relation �H on B

by: x �H y () both x ! y and y ! x belong to H: Then �H is a congruence

relation on B with respect to u;t and �: The quotient Boolean algebra B= �H
is denoted as B=H: The equivalence class in B=H containing z is denoted by jzj :
Moreover, for a subset Z of B; the set fjzj : z 2 Zg is denoted by jZj : Note that

jxj � jyj () x! y 2 H:
Let B = (B;u;t;�; 0; 1;21; :::;2n) be a multi-modal algebra: Then we de�ne

2
�1
i F = fx 2 B : 2ix 2 Fg for any F � B: If F is a �lter, so is 2�1

i F:

Lemma A.2. Let B = (B;u;t;�; 0; 1;21; :::;2n) be a multi-modal algebra: Let

(Q1;Q2) be a �xed pair of countable sets of nonempty subsets of B satisfying that

uQ1 and tQ2 exist for any Q1 2 Q1; Q2 2 Q2: Suppose the following conditions: for
all i 2 N;

(1): for all Q1 2 Q1; u2iQ1 := uf2ia : a 2 Q1g exists and u2iQ1 = 2i u Q1;

(2): f2i(a! b) : b 2 Q1g 2 Q1 for all a 2 B and all Q1 2 Q1;

(3): f2i(b! a) : b 2 Q2g 2 Q1 for all a 2 B and all Q2 2 Q2:

Then, for any (Q1;Q2)-�lter F of B ; the Boolean algebra B=2�1
i F satis�es
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(2.1): u jQ1j exists and u jQ1j = juQ1j for all Q1 2 Q1;

(2.2): t jQ2j exists and t jQ2j = jtQ2j for all Q2 2 Q2:

Lemma A.3. Let B = (B;u;t;�; 0; 1;21; :::;2n) be a multi-modal algebra: Let

(Q1;Q2) be a �xed pair of countable sets of nonempty subsets of B satisfying that

uQ1 and tQ2 exist for any Q1 2 Q1; Q2 2 Q2: Suppose that (Q1;Q2) satis�es the
conditions (1),(2) and (3) of Lemma A.2�. Then, for any i 2 N and F 2 F(Q1;Q2)(B);

if 2ia =2 F; there exists a G 2 F(Q1;Q2)(B) such that 2�1
i F � G and a =2 G:

A.2 Lindenbaum Algebra

We add a countably in�nite number of constant symbols d0;d1; :::: We denote

the set of formulae for the extended language by P�, and the set of closed formulae

by CP�: We denote the provability relation of QCY with CP� by `�QCY : For any

A;B 2 CP�; we de�ne A � B i� `�QCY (A � B) ^ (B � A): This relation � is

an equivalence relation over CP�: Therefore, we have the quotient set CP�= �. We

denote the equivalence class in CP�= � including A by [[A]]:

In CP�= �; we de�ne elements 0; 1 and operations u;t;�;21; :::;2n by

(1): 0 =[[:A ^A]] and 1 =[[:A _ A]];

(2): [[A]]u [[B]] = [[A ^B]]; [[A]]t [[B]] = [[A_ B]]; and �[[A]] = [[:A]];

(3): 2i[[A]] = [[Bi(A)]] for all i = 1; :::; n:

Then we have the following lemma.

Lemma A.4. L = (CP�= �; 0; 1;u;t;�;21; :::;2n) is a multi-modal algebra.

Proof. It is standard to show that (CP�= �; 0; 1;u;t;�) is a Boolean algebra. Let

i 2 N: Since `�QCY (:A _ A � Bi(:A _ A)) ^ (Bi(:A _ A) � :A _ A)); we have
2i1 = 1: Since `�QCY (Bi(A^B) � Bi(A)^Bi(B))^ (Bi(A)^Bi(B) � Bi(A^B)); we
have 2i([[A]]u [[B]]) = 2i[[A]]u 2i[[B]]:

In the following, we call L the Lindenbaum algebra. In the main step of the

completeness theorem, we will use Lemmas A.1 and A.3. For this purpose, we should

prove the following lemma, which will guarantee the condition of Lemma A.2.

Lemma A.5. Let T (Be(A)) be formula Bjm(Dm � Bjm�1
(Dm�1 � ::: � Bj1(D1 �

Be(A)):::)) for e 2 N�; and T (C(A)) formula Bjm(Dm � Bjm�1
(Dm�1 � ::: �

Bj1(D1 � C(A)):::)): Then, in the Lindenbaum algebra L;

(1): uf[[T (Be(A))]] : e 2 N
�g = [[T (C(A))]];

(2): for any i 2 N; uf2i[[T (Be(A))]] : e 2 N
�g = 2i[[T (C(A))]].

Proof. Consider (1). First, let us see that [[T (C(A))]] is a lower bound of f[[T (Be(A))]] :

e 2 N�g. This follows from the fact that `�QCY T (C(A)) � T (Be(A)) for all

e 2 N�: Now, let [[D]] be a lower bound of f[[T (Be(A))]] : e 2 N
�g: This means that

`�QCY D � T (Be(A)) for all e 2 N
�: Hence, by CI�; we have `�QCY D � T (C(A)):

This means that [[T (C(A))]] is greater than or equal to D in L: Thus, [[T (C(A))]] is
the greatest lower bound of f[[T (Be(A))]] : e 2 N

�g:
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(2) follows from (1) by considering Bi(:A _ A � T (Be(A))) in (1) instead of

T (Be(A)):

Now we de�ne a particular (Q1;Q2) as follows. First, de�ne S0;S1; ::: by the

following induction:

(1): S0 = ff[[Be(D)]] : e 2 N
�g : D 2 CP�g;

(2): Sm+1 = ff2i(b! a) : a 2 Sg : b 2 CP�= � ; S 2 Sm and i 2 Ng:

Next, for each C 2 CP� of the form 8xD(x) or 9xD(x); de�ne SC = f[[D(t)]] : t is a
closed termg; where D(t) is obtained from expression D(x) by substituting t for all

occurrences of x in D(x): We de�ne

(3): T = fSC : C 2 CP� and is of the form 8xD(x) or 9xD(x)g:

Then we de�ne (Q1;Q2) = (
S
m2! Sm [ T ; T ): Then Q1 and Q2 are countable sets

of sets of closed formulae.

Lemma A.6.(1): For any Q1 2 Q1 and Q2 2 Q2; uQ1 and tQ2 exist;

(2): Q = (Q1;Q2) satis�es the conditions (1), (2), (3) of Lemma A.2.

Proof.(1): Consider S 2 Sm: This S is written as f[[Bjm(Dm � ::: Bj2(D2 �
Bj1(D1 � Be(A))):::)]] : e 2 N�g: Hence uS is [[Bjm(Dm � ...Bj2(D2 � Bj1(D1 �

C(A))):::)]] by Lemma A.5.

Consider SC ; where C 2 CP
� and is of the form 8xD(x) or 9xD(x): By L6 and

L7, we have uSC = [[8xD(x)]] and tSC = [[9xD(x)]]:

(2): Consider the condition (1) of Lemma A.2. Let S 2 Sm: In the same as (1), we

have u2iS = 2i(uS) by Lemma A.5.(2). Hence its existence is also proved.

Let SC 2 T . Then 2i(uSC) = 2i[[8xD(x)]] = [[Bi(8xD(x))]] = [[8xBi(D(x))]]

= uf[[Bi(D(t))]] : t is a closed termg = u2iSC : Hence its existence is also proved.

Consider (2) of Lemma A.2. Let Q1 2 Q1 and a 2 CP
�= � : Then if Q1 2 Sm

for some m; then f2i(a ! b) : b 2 Q1g 2 Sm+1 � Q1. Suppose Q1 2 T . Then

Q1 = fD(t) : t is a closed termg for some closed 8xD(x): Let a = [[A]]: Then

f2i(a ! b) : b 2 Q1g = f2i(�a t b) : b 2 Q1g = f2i([[:A]]t [[D(t)]]) : t is a closed

termg = f2i([[:A_D(t)]]) : t is a closed termg 2 T � Q1:
Consider (3) of Lemma A.2. Let Q2 2 Q2 = T and a 2 B: Then Q2 = fD(t) : t

is a closed termg for some closed 8xD(x): Let a = [[A]]: Then f2i(b! a) : b 2 Q2g =
f2i(�bta) : b 2 Q2g = f2i([[:D(t)]]t[[A]]) : t is a closed termg = f2i([[:D(t)_A]]) : t

is a closed termg = f([[Bi(:D(t)_ A)]]) : t is a closed termg 2 T � Q1:

Now we are going to de�ne a Kripke frame F = (W ;R1; :::; Rn;M), and an

interpretation Id(w) = [ ~d0; ~d1; :::; ~f0; ~f1; :::; ~P
w
0 ;

~Pw
2 ; :::] in F as follows:

(1): W = F(Q1;Q2)(L);

(2): for all i 2 N; wRiu if and only if 2�1
i w � u;

(3): M is the set of all closed terms;

(4): for newly introduced constant symbol dk; its interpretation ~dk = dk;

(5): for any m-ary function symbol fk; ~fk(t1; :::; tm) = fk(t1; :::; tm);
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(6): for any m-ary predicate symbol Pk and any w 2 W; ~Pw
k (t1; :::; tm) = > if and

only if [[Pk(t1; :::; tm)]] 2 w:

We will proveMd = (F ; Id) = ((W ;R1; :::; Rn;M); Id) is a Kripke model for the

extended Ld = [d0;d1; :::; f0; f1; :::;P0; :::]. Let I be the interpretation obtained from
Id by deleting the interpretations of dk for k = 0; :::We will prove thatM = (F ; I)

is a Kripke model for the original language L = [f0; f1; :::;P0; :::].

Lemma A.7. Each Ri is serial and transitive.

Proof. Consider seriality. Let w 2 W: Consider 2i[[:A ^ A]] = [[Bi(:A ^ A)]]: By

Axiom D; we have 2i[[:A ^A)]] = [[:A ^ A]] = 0: Since w is a prime �lter, we have

0 =2w: By Lemma A.3, we have u 2 F(Q1;Q2)(L) such that 2�1
i w � u; i.e., wRiu (and

0 =2u):
Consider transitivity. Suppose wRiu and uRiv: Then 2

�1
i w � u and 2�1

i u � v:

Let [[A]] 2 2�1
i w: Then [[Bi(A)]] = 2i[[A]] 2 w: By Axiom 4; we have 2i[[A]] =

[[Bi(A)]] � [[BiBi(A)]] = 2i2i[[A]]: Since w is a �lter, we have 2i2i[[A]] 2 w: This

implies 2i[[A]] 2 2
�1
i w � u: Hence [[A]] 2 2�1

i u � v:

Let � be an assignment from fa0; a1; :::g toM: For any term t; we de�ne t� to be

the term obtained from t by replacing each free variable ak occurring in t by closed

term �(ak); and for A 2 P�; we de�ne A� to be the formula obtained from A by

replacing each free variable ak occurring in A by �(ak): The following lemma can be

proved by induction on the length of a term.

Lemma A.8. For any term t; V (t; (Id; �)) = t� .

Lemma A.9. For any A 2 P� and w 2 W; (Md; �; w) j= A if and only if [[A�]] 2 w.

Proof. Consider an atomic formula Pk(t1; :::; tm). Then (Md; �; w) j= Pk(t1; :::; tm)

, ~Pw
k (V (t1; (I

d; �)); :::; V (tm; (I
d; �))) = >, ~Pw

k (t
�
1 ; :::; t

�
m) = >, [[Pk(t

�
1 ; :::; t

�
m)]] 2

w , [[Pk(t1; :::; tm)
�]] 2 w:

Now, consider a nonatomic formulaA in P�:We suppose the induction hypothesis

that the assertion holds for any closed subformula of A: We should consider the

eight cases based on the outermost connectives: :;�;^;_; 8; 9; B1; :::;Bn and C:We

consider only :; 8; Bi and C:

(:) : Suppose (Md; �; w) j= :A: Then (Md; �; w) 2 A: By the induction hypoth-

esis, we have [[A�]] =2 w: Since [[:A�]] t [[A�]] = [[:A� _ A� ]] = 1 2 w; and w is a

prime �lter, we have [[:A�]] 2 w:
Suppose [[:A�]] 2 w: Since w is a prime �lter, we have [[A�]] =2 w; which implies

Suppose (Md; �; w) 2 A by the induction hypothesis. Thus, (Md; �; w) � :A:
(�) : Suppose (Md; �; w) j= A � B: Then (Md; �; w) 2 A or (Md; �; w) � B:

By the induction hypothesis, we have [[A�]] =2 w or [[B� ]] 2 w: Since [[:A�]] 2 w

or [[B�]] 2 w; and since [[:A�]] � [[A� � B� ]] and [[B�]] � [[A� � B� ]]; we have

[[A� � B� ]] 2 w:
Suppose [[A� � B� ]] 2 w: Then [[:A� _ B� ]] = [[:A� ]] t [[B�]] 2 w: Since w is

a prime �lter, we have [[:A� ]] 2 w or [[B�]] 2 w: Hence [[A�]] =2 w or [[B� ]] 2 w:

By the induction hypothesis, we have (Md; �; w) 2 A or (Md; �; w) � B: Thus,

(Md; �; w) � A � B:
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(8) : Suppose (Md; �; w) j= 8xA(x): Then (Md; �0; w) j= A(a) for any �0 =
a
�:

By the induction hypothesis, we have [[A(a)�
0

]] 2 w for all �0 =
a
�: This means

[[A(t)�]] 2 w for all closed t: The greatest lower bound of f[[A(t)]] : t is a closed termg

is [[8xA(x)�]] = [[(8xA(x))�]] and belongs to w, since w is a (Q1;Q2)-�lter.
Suppose [[8xA(x)�]] 2 w: Then [[8xA(x)�]] � [[A(t)]] for any closed term t: Hence

[[A(t)]] 2 w for all closed term t: Hence (F ; Id; �; w) j= A(t) for all closed terms t: Let

�0 =
a
� and �0(a) = t 2M: Then (Md; �0; w) j= A(a): This means (Md; �0; w) j= A(a)

for any �0 =
a
�; which implies (Md; �; w) j= 8xA(x):

(9) : Suppose (Md; �; w) j= 9xA(x): Then ((F ; Id); �0; w) j= A(a) for some �0 =
a

�: Let s = �0(a): Then (Md; �0; w) j= A(a): By the induction hypothesis, we have

[[A(a)�
0

]] 2 w: Since [[A(a)�
0

]] � [[9xA(x)�
0

]] = [[9xA(x)�]]; we have [[9xA(x)�]] 2 w

since w is a �lter.

Suppose [[9xA(x)�]] 2 w: Since w is a (Q1;Q2)-�lter, we have fA(t)� : t is a

closed termg \ w 6= ;. Let [[A(s)�]] 2 w: By the induction hypothesis, we have

(Md; �; w) j= A(s): Taking �0(a) = s; we have (Md; �0; w) j= A(a); which implies

(Md; �; w) j= 9xA(x):
(Bi) : Suppose (M

d; �; w) j= Bi(A): Then (Md; �; u) j= A for any u 2 Ri(w) :=

fv 2 W : wRivg: By the induction hypothesis, [[A�]] 2 u for any u 2 Ri(w): Suppose

2i[[A
�]] =2 w: Then, by Lemma A.3, we have another u 2 F(Q1;Q2)(L) such that

2
�1
i w � u and [[A�]] =2 u: This is a contradiction.. Hence [[Bi(A)

�]] = 2i[[A
�]] 2 w:

Suppose [[Bi(A)
�]] = 2i[[A

�]] 2 w: Then for any u with 2�1
i w � u; [[A�]] 2 u: By

the induction hypothesis, we have (Md; �; u) j= A for all u 2 Ri(w):

(C) : Suppose (Md; �; w) j= C(A): Then (Md; �; u) j= A for all u reachable from

w: By the induction hypothesis, we have [[A]] 2 u for all u reachable from w: Let

e be any element in N�: Now, suppose [[Be(A)]] 2 u for all u reachable from w:

Let u be any reachable world from w: If 2i[[Be(A)]] =2 u; then, by Lemma A.3, we

have another v 2 F(Q1;Q2)(L) such that 2�1
i u � v and [[Be(A)]] =2 v; which is a

contradiction. Hence 2i[[Be(A
�)]] 2 u: That is, [[BiBe(A

�)]] 2 u for all i 2 N and

all u reachable from w: Hence we proved that [[Be(A
�)]] 2 u for all e 2 N� and

u reachable from w: Thus, [[Be(A
�)]] 2 w for all e 2 N�: The greatest lower bound

uf[[Be(A
�)]] : e 2 N�g is [[C(A�)]]; and belongs to w by LemmaA.5 and the de�nition

of (Q1;Q2), i.e., [[C(A
�)]] 2 w:

Suppose [[C(A�)]] 2 w: Since [[C(A�)]] � [[Be(A
�)]] for all e 2 N�; we have

[[Be(A
�)]] 2 w for all e 2 N�: It follows from this fact that [[A�]] 2 u for all u reach-

able from w: Hence (Md; �; u) j= A for all u reachable from w: Hence (Md; �; w) j=
C(A):

Lemma A.10. For any closed A 2 P ; `�QCY A if and only if `QCY A:

Proof. We show the only-if part. Let `�QCY A: Then there is a proof P of A in QCY

in CP�: Then P may have a countable number newly introduced constant symbols

d0; d1; :::; and P has a countable free variables. Let P 0 be the tree obtained from P

by substituting simultaneously a2m+1 for all the occurrences of free variables am in

P for all m = 0; 1; :::: This P 0 is also a proof of A: Then we substitute a2m for all

the occurrences of dm in P 0 for all m = 0; 1; :::; and let P 00 be the tree obtained from

P 0 by the substitution. Then P 00 is a proof of A in P :
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Lemma A.11. For any A 2 P and w 2W; (M; �; w) � A if and only if (Md; �; w) �

A:

Now, we complete the proof of the completeness by showing that for any A 2 P ;

if 0QCY A; then (M; �0; w) 2 A for some world w 2 W and some assignment �0: Let

A 2 P : Suppose 0QCY A: Let A
c be the universal closure of A: Then 0�QCY A

c: This

means [[Ac]] 6= 1. By Lemma A.3; there is a w 2 F(Q1;Q2)(L) such that [[Ac]] =2 w:

By Lemma A.9, we have (Md; �; w) 2 Ac: Then there is another assignment �0 such

that (Md; �0; w) 2 A: Since A 2 P , we have (M; �0; w) 2 A.

Remark A.12. To prove the completeness of QGL! (Theorem 6.2), we modify the

above proof as follows: We denote, by E!(Pd); the set of formulae by obtained by

adding the constants d0;d1; ::: to the original language. Let A be a formula in E!(P):
We consider the set of all closed subformula CS�(A) instead of CP�: Then we can

modify the above proof for the completeness of QCY to that of QGL! .

Appendix B: Equality and Global Interpretations in Models

It would be natural to include equality in predicate common knowledge logics

for application purposes. However, the inclusion of equality to predicate epistemic

(more generally modal) logics raises some subtle problems (cf., Garson [3] and Fagin

et al. [1]). When we interpret equality as the real equality independent of possi-

ble worlds in Kripke models, the equality would become related closely to common

knowledge. More generally, global interpretations of predicate symbols are related

to common knowledge, where interpretations of predicate symbols independent of

a possible world are called global. In this appendix, we consider global interpreta-

tions of predicate symbols, in particular, equality, in our logic QCY as well as their

relationships to common knowledge both in syntactical and semantic treatments.

We take QCY as our basic logic and discuss two ways of syntactical treatments

of global interpretations of predicate symbols. Recall that all Kripke models are

assumed to be serial and transitive.

In Subsection B.1, we give semantical and syntactical preliminaries. We introduce

generated Kripke models for QCY and show that it su�ces to consider generated

ones only. Next we discuss two ways of extending formal system QCY by adding

some axioms and show relationship between them. In Subsection B.2, we discuss

general treatment of global interpretations of predicate symbols. In Subsection B.3,

we present a theorem which descibes the completeness of QCY when we restrict our

models with the real equality.

B.1 Preliminaries

We say that a Kripke frame F = (W ;R1; :::; Rn;M) is generated i� there is a

world w 2 W such that every u 2 W is reachable from w: We say that a Kripke

modelM = (F ; I) is generated i� F is generated. Recall that u is reachable from

w i� there are w0 = w1; w2; :::; wm = u in W such that for each k = 0; 1; :::; k� 1;

wkRiwk+1 for some i 2 N:
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Lemma B.1. Let A be any formula. ThenM � A for all Kripke modelsM if and

only ifM � A for all generated Kripke modelsM:

Proof. The if-part is essential. Suppose thatM 2 A for someM = (F ; I) with F =

(W ;R1; :::; Rn;M): There is a w 2 W and an assignment � such that (M; �; w) 2 A:
Let W 0 = fu 2 W : u is reachable from wg; and R0

1; :::; R
0
n the restrictions of

R1; :::; Rn to W
0: Then F 0 = (W 0;R0

1; :::; R
0
n;M) is a generated Kripke frame. Let I0

be the restriction of I to F 0: Then M0 = (F 0; I0) is a generated Kripke model and

(M0; �; w) 2 A: I.e.,M0 2 A:

Hereafter, all Kripke models in this Appendix are assumed to be generated.

We discuss extensions of formal system QCY by adding axioms. As a starting

point, we recall the situation in QKD4n: Let us take an arbitrary set � of closed

formulae. We have two ways of extending QKD4n with �: One way is to include

� as logical axioms, i.e., formulae in � are allowed to be initial formulae in proofs.

In this case, the extended system is denoted as QKD4n(�): We write `QKD4n(�) A
i� A is provable in QKD4n(�): The other way is to consider non-logical axioms (or

theory). That is, we de�ne � `QKD4n A i� `QKD4n
Vk
i=1Di � A for some �nitely

many D1; :::; Dk 2 �. However, � `QKD4n A is not enough to capture `QKD4n(�) A:

In fact, we need to strengthen � into C�(�) := fBe(D) : D 2 � and e 2 N�g: Then
we have the following theorem connecting these two ways of introducing nonlogical

axioms, which is known as the deduction theorem.

Theorem B.2 (Deduction Theorem for QKD4n). Let � be any set of closed

formulae and A any formula. Then C�(�) `QKD4n A if and only if `QKD4n(�) A:

Now, we consider these two ways of extensions in the case of QCY. We have to

pay attentions to the fact that QCY allow in�nitary proofs (and the fact that we have

only completeness for QCY but not strong completeness). Hence, we restrict � to be

a �nite set, or equivalently to be a singleton set fDg. We write QCY(�) for the this

extension to allow formulae in � to be initial formulae in proofs, whose provability

is denoted by `QCY(�) : The other way is to de�ne � `QCY A by `QCY
Vk
i=1Di � A

for some �nitely many D1; :::; Dk 2 �: Similar to the case of QKD4n, we need

to strengthen �: Here, the set C�(�) is in�nite even if � consists of one formula.

However, we can use the common knowledge operator C in QCY, rather than the

above C�:

Lemma B.3 (Deduction Theorem for QCY). Let � be a �nite set of closed

formulae, and A a formula. Then C(�) `QCY A if and only if `QCY(�) A:

Proof. The only-if part follows from the fact that `QCY(�) C(D) for any D 2 �:

We show the if part. For the sake of simplicity, we assume that � is a singleton set

fDg: First, we claim that for every proof P in QCY and every formula E in P; it

holds that `QCY C(D) � E: We show this by induction on P: If P consists of only

of an initial formula E other than D; then C(D) � E is provable by L1 and MP. If

P consists only of D; then C(D) � D is provable in QCY. If P is non-trivial, then

we have only to show that `QCY C(D) � E for its lowermost formula E: We divide

the cases depending on the last inference rule which derives E from its premise(s).

We consider only the Necessitation and CI�.
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Necessitation: The E is of the form Bi(F ) for some F: By the induction hypothesis,

we have `QCY C(D) � F: Then `QCY BiC(D) � Bi(E): Since `QCY C(D) � BiC(D);

we have `QCY C(D) � Bi(F ):

CI� : The E is of the form F1 � T (C(F2)) for some F1 and F2: By the induction

hypothesis, we have `QCY C(D) � (F1 � T (Be(F2))) for all e 2 N
�: Hence, `QCY

C(D) ^ F1 � T (Be(F )) for all e 2 N�: Hence `QCY C(D) ^ F1 � T (C(F2)): I.e.,

`QCY C(D) � (F1 � T (C(F2))):

We have the following semantical counterpart of Lemma B.3, which is easily

shown. For a �nite nonempty set of formulae � = fA1; :::; Alg; we denote A1^ :::^Al

by
V
�: In the following, we writeM � � forM �

V
�:

Lemma B.4. Let � be a �nite set of closed formulae and A 2 P . Then M �
V
C(�) � A for any Kripke modelsM if and only ifM � A for any Kripke models

M withM � �:

By the Completeness Theorem for QCY, we have the following.

Lemma B.5. Let � be a �nite set of closed formulae and A 2 P . Then the following
four statements are equivalent:

(1): `QCY(�) A;

(2): C(�) `QCY A;

(3): M �
V
C(�) � A for any Kripke modelsM;

(4): M � A for any Kripke modelsM withM � �:

B.2 Global Interpretations of Predicate Symbols

In this subsection, we �x a particular predicate symbol P with arity m: We say

that P is global in a Kripke model M = (F ; I) = ((W ;R1; :::; Rn;M); I) i� the

interpretation ~Pw of P inM is independent of w 2 W , i.e.,

~Pw(a1; :::; am) = ~Pu(a1; :::; am) for all w; u 2 W and (a1; :::; am) 2M
m: (B.1)

Now, we consider the syntactical counterpart of (B.1). We denote the following

formula by Gl(P):

8x1:::8xm (P(x1; :::; xm) � C(P(x1; :::; xm)))^ (B.2)

8x1:::8xm (:P(x1; :::; xm) � C(:P(x1; :::; xm)))

That is, if P(a1; :::; am) or its negation holds, then it or its negation is common

knowledge among the agents. The syntactical counterpart of (B.1) is, in fact, the

common knowledge C(Gl(P)) of Gl(P).5 First, we state the following lemma.

Lemma B.6. Let M be a Kripke model. Then the following three statements are

equivalent:

5In this paper, we assume that the interpretations of function symbols are always global in Kripke

models. Wolter [21] discussed some problems when functions symbols are interpreted locally and/or
globally.

28



(1): M satis�es (B.1);

(2): M � C(Gl(P));

(3): M � Gl(P):

Proof. We show here that (1) implies (3). LetM = (K; I) = ((W ;R1; :::; Rn;M); I):

Let w be a world in W and � an assignment. Suppose (M; �; w) � P(a1; :::; am):

By (B.1), we have (M; �; u) � P(a1; :::; am) for every u reachable from w: Hence

(M; �; w) � C(P(a1; :::; am)): Since � is arbitrary, we have

(M; �; w) � 8x1:::8xm (P(x1; :::; xm) � C(P(x1; :::; xm)))

for every �: Similarly, we have

(M; �; w) � 8x1:::8xm (:P(x1; :::; xm) � C(:P(x1; :::; xm)))

for every �: Hence (M; �; w) � Gl(P):

The validity in the class of Kripke models satisfying (B.1) is captured by the

extension QCY or by assuming the common knowledge C(Gl(P)) of Gl(P) as a

nonlogical axiom in QCY.

Theorem B.7 (Global Interpretation of P). For any A 2 P ; the following three
conditions are equivalent:

(1): `QCY(Gl(P)) A;

(2): C(Gl(P)) `QCY A;

(3): M � A for all Kripke modelsM satisfying (B.1).

Proof. Lemma B.3 implies the equivalence between (1) and (2). From Lemmas B.6

and B.4, it follows that (3) is equivalent to thatM � C(Gl(P)) � A for all Kripke

modelsM. By the completeness of QCY, this is equivalent to (2).

B.3 Global Equality and Normal Models

Now, let us consider the problem of equality. Let L = [f0; f1; :::;P0;P1; :::; ] have

�nitely many symbols and contain an equality symbol � : In this section, when the

interpretation ~�w of � at the world w is required to be not only global but also the

standard identity on the domains of Kripke models, we see what axioms are required

correspondingly for QCY.

We say thatM = ((W ;R1; :::; Rn;M); I) is normal i� the interpretation ~�w of

the binary relation � at any w inM is an identity relation, i.e., a ~�w b if and only

if a and b are identical. This implies that in a normal modelM, the interpretation

of � is global. Hence, Lemma B.6 is applied to equality symbol � : We write the

corresponding axiom Gl(�) as Eg:

Eg: 8x18x2 (x1 � x2 � C(x1 � x2)) ^ 8x18x2 (:x1 � x2 � C(:x1 � x2)) :

For the sake of simplicity, we regard Eg as the set consisting only of this formula.

Let us recall the equality axioms:
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Reexivity: 8x (x � x) ;

Symmetry: 8x8y (x � y � y � x) ;

Transitivity: 8x8y8z (x � y ^ y � z � x � z) ;

Substitutability: 8x1:::8xm8yk (xk � yk � f(x1; :::; xk; :::; xm) � f(x1; :::; yk; :::; xm)) ;

8x1:::8xm8yk (xk � yk � (P (x1; :::; xk; :::; xm) � P (x1; :::; yk; :::; xm))) ;

where f and P are m-ary function symbol and predicate symbol for m (1 � m < !)

and k = 1; :::; m: We denote the set of these axioms by Eq. Note that Eq is �nite,

since L is �nite.

Lemma B.8. LetM be a normal Kripke model. ThenM � Eq[Eg:

As in Theorem B.7, we have two ways of introducing the equality axioms to QCY.

The next theorem connects these treatments and normal models.

Theorem B.9 (Treatment of Equality). Let A be a formula. Then the following

four statements are equivalent:

(1): `QCY(Eq[Eg) A;

(2): C(Eq[Eg) `QCY A;

(3): M � A for any Kripke modelsM withM � Eq[Eg;

(4): M � A for any normal Kripke modelsM:

Proof. By Lemma B.5, (1),(2) and (3) are all equivalent. By Lemma B.8, (3) implies

(4). We have only to show that (4) implies (3). It su�ces to prove that for each

Kripke modelM withM � Eq[Eg, there is a normal Kripke modelM0 such that

M � A if and only ifM0 � A: The construction of such anM0 is now shown below.

Lemma B.10. Let M = ((W ;R1; :::; Rn;M); I) be a Kripke model with M �

Eq[Eg. Let ~�w be the interpretation of � in world w inM: Then ~�w is an equiva-

lence relation on M for any w 2 W: Moreover, ~�w is independent of w:

The last independence claim of Lemma B.10 needs the assumption that M is

a generated model. However, Lemma B.1 guarantees that we can focus only on

generated models.

Let M = ((W ;R1; :::; Rn;M); I) be a Kripke model with M � Eq[Eg. Then

Lemma B.10 states that equivalence relations ~�w are the same over W: Hence we

denote ~�w by ~�: De�ne the set of equivalence classes M=~�: We denote the equiva-

lence class including a by [a]: The following lemma guarantees that we can treat any

elements in [a] as the same as a inM:

Lemma B.11. Let M = ((W ;R1; :::; Rn;M); I) be a Kripke model with M �

Eq[Eg. Then the following hold for any w 2 W :

(1): For any m-ary function symbol f; if ak ~� bk for k = 1; :::; m; then ~f(a1; :::; am)

~� ~f(b1; :::; bm);

(2): For anym-ary predicate symbol P; if ak ~� bk for k = 1; :::; m; then ~Pw(a1; :::; am) =

> if and only if ~Pw(b1; :::; bm) = >:
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Now, we de�neM0 = (F 0; I0) by:

N1: F 0 is obtained from F by replacingM byM 0; i.e., F 0 = (W ;R1; :::; Rn;M
0) with

M 0 =M=~� ;

N2: I0(w) = [ ~f 00;
~f 01; :::;

~P 0w
0 ;

~P 0w
1 ; :::] is de�ned as follows:

N2-1: for each m-ary function symbol f;

~f 0([a1]; :::; [am]) = [ ~f(a1; :::; am)] for all [a1]; :::; [am] 2M
0;

N2-2: for each m-ary predicate symbol P;

~P 0w([a1]; :::; [am]) = ~Pw(a1; :::; am) for all [a1]; :::; [am] 2M
0:

Lemma B.11 guarantees the well-de�nedness of I0: This M0 = (F 0; I0) is a normal

Kripke model. Let � : FV ! M be an arbitrary assignment on M. A mapping

�0 : FV !M 0 de�ned by

�0(a) = [�(a)] for any a2FV:

is an assignment onM0: Conversely, for assignment � : FV !M onM0, there is an

assignment � onM with � = �0: Then we have the following.

Lemma B.12. (1): For any term t; V (t; (I0; �0)) = [V (t; (I; �))];

(2): For any w 2 W and any B 2 P ; (M; �; w) � B if and only if (M0; �0; w) � B:

By this lemma, we have a normal Kripke model M0 such that M � A if and

only ifM0 � A: It follows that (4) implies (3). This completes the proof of Theorem

B.9.
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